
Competitive Debugging
Toward Contests Promoting Debugging as a Skill

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

patrick.rein@hpi.uni-potsdam.de

Tom Beckmann
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

tom.beckmann@hpi.uni-potsdam.de

Leonard Geier
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

leonard.geier@hpi.uni-potsdam.de

Toni Mattis
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

toni.mattis@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

robert.hirschfeld@uni-potsdam.de

Abstract

Debugging is an essential part of software development. Nu-
merous tools and techniques to improve debugging have
been proposed in research or developed in the industry. How-
ever, only a few of those see widespread use, and debugging
only rarely is a primary teaching subject.

To promote debugging as a distinct skill, we propose Com-

petitive Debugging, where participants compete on who can
repair a failure the fastest or the most comprehensively. We
further propose a format for debugging contests aimed at
attracting and engaging participants to motivate them to
improve their debugging skills. In our proposed format par-
ticipants simultaneously work on the same failure or observe
fellow participants during their debugging activity. To eval-
uate the format, we ran two pilots and one main event. We
found that the format prompted participants to reflect on
their debugging process, that the format allowed them to
compare their debugging approaches to others through post-
round discussions on their various approaches, and that the
format was enjoyable and engaging for all participants. We
present our format of a debugging contest, an evaluation of
the trial runs we performed, and give guidance for other peo-
ple who consider hosting a Competitive Debugging event.
Ultimately, we aim to provide developers with opportu-

nities to improve their debugging skills. Our observations
indicate that Competitive Debugging can provide such op-
portunities to train debugging techniques and learn new
tools.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9909-8/22/12.
https://doi.org/10.1145/3563835.3567665

CCS Concepts: · Social and professional topics → Com-

puting education; · Software and its engineering → Soft-

ware maintenance tools.

Keywords: debugging, competitive debugging, competition,
contest, teaching, training

ACM Reference Format:

Patrick Rein, TomBeckmann, LeonardGeier, ToniMattis, and Robert
Hirschfeld. 2022. Competitive Debugging: Toward Contests Promot-
ing Debugging as a Skill. In Proceedings of the 2022 ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Reflec-

tions on Programming and Software (Onward! ’22), December 8ś10,

2022, Auckland, New Zealand. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3563835.3567665

1 Introduction

Programmers spend considerable time debugging the pro-
grams they are working on. Depending on the study, debug-
ging takes up 13 % to 40 % percent of programmers’ software
development time [2, 23][28, p. 8-2]. Correspondingly, to
improve debugging, the research communities on program-
ming languages and software engineering have developed
numerous debugging strategies and tools, such as general-
ized backward reasoning [33], time-travel debuggers [17, 24],
and automatic debugging tools [32].
However, most programmers use few of these tools and

techniques in practice, although they would benefit from
them [8, 23]. Programmers either do not know about ad-
vanced tools [23] or do not know how to set them up and
make efficient use of them [30]. The reason for this mis-
match may be a lack of education and training on debug-
ging [2, 22, 23].
At the same time, researchers also found that debugging

skills can be taught [19]. Numerous studies have shown
that when students learn and train debugging skills, they
employ systematic debugging techniques more often and
become more productive at debugging [19, 21]. Neverthe-
less, debugging seems to be seldom taught extensively and

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

172

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9454-8381
https://orcid.org/0000-0003-0015-1717
https://orcid.org/0000-0002-9206-8146
https://orcid.org/0000-0001-7024-9838
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3563835.3567665
https://doi.org/10.1145/3563835.3567665


Onward! ’22, December 8ś10, 2022, Auckland, New Zealand P. Rein, T. Beckmann, L. Geier, T. Mattis, R. Hirschfeld

Figure 1. The trophy for the first place of our first Competi-

tive Debugging event: the golden łbugž.

systematically. One reason for this lack of training may be
that teachers and students do not regard debugging as much
a distinct skill as they regard programming.

To make debugging more prominent as a skill, we propose
the idea of Competitive Debugging. At a debugging contest,
contestants from beginners to experts gather to competi-
tively find and repair defects.

Along with highlighting debugging as a skill, these events
also directly serve as a way to teach debugging. By observ-
ing fellow contestants, participants can learn how to best
employ debugging tools and strategies or reflect on their
own techniques through observing the debugging process
of others.
Further, debugging contests may also help disseminate

knowledge about the existence and application of advanced
programming tools.
In this paper, we outline the basic idea of Competitive

Debugging and fundamental considerations when setting
up individual debugging contests. To illustrate how these
may look like in practice, we describe three events from the
perspective of organizers and participants: a pilot contest
with researchers, a pilot contest for demonstrating advanced
tools through Competitive Debugging, and an actual debug-
ging contest with graduate-level students resulting in the
awarding of the golden łbugž (see Figure 1).
In the following, we first discuss debugging skills and

their training in some more detail, and discuss related com-
puter science competition formats (see Section 2). We then
describe the core idea of Competitive Debugging and what
needs to be considered when planning a contest (see Sec-
tion 3). Afterwards, we describe the setup, observations, and
interview results from the two pilot contests (see Section 4)

and the actual event (see Section 5)1. Finally, we discuss gen-
eral considerations when planing a debugging contest (see
Section 6).

2 Background

Debugging is a skill that requires knowledge and experi-
ence with debugging techniques and tools. At present, many
programmers have received little education and training in
debugging. Competitions can be a way to foster such educa-
tion and training of a software development skill, as shown
by a variety of competitions in other fields such as general
programming or cybersecurity.

In the remainder of the paper, we will refer to the wrong
section of code as the defect or fault, the wrong run-time
state as the infection, and the observable, unexpected system
behavior as the failure.

2.1 The Need for Debugging Education

Debugging is an integral activity during software devel-
opment [28]. At the same time, debugging is a skill sepa-
rate from programming, requiring specialized education and
training. This is underlined by several studies that illustrate
that, at least for students, good programmers are not nec-
essarily good debuggers, while most good debuggers are
also good programmers [1, 9, 20]. Although debugging is
important in everyday software development, most software
developers have not received considerable training on de-
bugging techniques and tools [23].
Programmers developing software regularly debug their

systems, to get code that they are currently working on
running, to repair code written in the past, or to better un-
derstand the system and it actually behaves. Depending on
the study, programmers do debugging between 13 % to 40 %
of their programming time [2, 23][28, p. 8-2].
Although debugging takes up such a large portion of de-

velopment time and debugging is a distinct skill, studies
repeatedly find that education and training on debugging
tools and techniques remain inadequate [9, 22]. For example,
one study concluded that while students knew common de-
bugging techniques, ł. . .many students apply the techniques
ineffectively or inconsistently. Testing is patchy and incom-
plete. Many seem unaware they should test more input than
the specification outlines. Only one appeared to methodi-
cally test boundary conditions. Likewise, the use of print
statements was not systematic.ž [22, p. 167] According to
two surveys, professional programmers do indeed employ
structured debugging techniques to some extent and make
use of printf, assertions, and the step-wise debugger [2, 23].
At the same time, one of these studies combined the sur-
vey responses with observations of debugging practices and
found that łin general, developers’ theoretical knowledge

1You can find the materials used for the main event at zenodo.org/doi/10.
5281/zenodo.7223815 [25].

173

zenodo.org/doi/10.5281/zenodo.7223815
zenodo.org/doi/10.5281/zenodo.7223815


Competitive Debugging Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

and practical use of specialized debugging features are rela-
tively shallow, just the amount that is seemingly sufficient
for their debugging problems.ž [2] With regard to more ad-
vanced debugging tools such as back-in-time debuggers or
automatic fault localization techniques, less than half of the
programmers asked in one survey are aware that they exist,
and even less have ever used any of these tools [23].
This partial knowledge about debugging techniques and

tools may be the result of a lack of education and training
on debugging [2, 22, 23]. The two surveys from above found
that there is little formal education on debugging [2, 23]. In
one survey, almost all participants have received debugging
education at college or university, but most only received it
on one occasion [23]. In both studies, participants reported
that theymostly learned debugging through online resources
and, if available, mentorships and similar arrangements [2,
23].

This inadequacy of education and training on debugging
techniques and tools may ultimately lead to more time-
consuming and frustrating debugging sessions. By promot-
ing debugging as a distinct skill to be honed in addition to
ones programming skills, debugging education may gain
more attention in higher-level education and training.

2.2 Related Software Development Competitions

Using competitions to hone and promote skills has a long
tradition in various areas of software development, such
as algorithmic problem solving, general software engineer-
ing, game design, or cybersecurity. Two examples of promi-
nent software development competitions are Competitive

Programming and Capture the Flag contests. While many
other competitions exist, we discuss Competitive Program-

ming due to its prominence and Capture the Flag due to the
similar component of understanding systems and its similar
real-time nature.

Competitive Programming. A prominent competition is
the format of Competitive Programming [4, 15]. In Compet-
itive Programming events, contestants typically set out to
solve a number of problems requiring participants to write a
program. Depending on the event, the contestants are ranked
according to the number of problems solved, the time it took
them to solve the problems, or properties of their solution,
such as the time it needs to run.

Competitive Programming events aim to give contestants
an opportunity to test and improve their skills or to show-
case techniques, languages, or skills. For instance, the global
Competitive Programming competition International Colle-

giate Programming Contest (ICPC) advertises the contest as:
łThe contest fosters creativity, teamwork, and innovation
in building new software programs, and enables students
to test their ability to perform under pressure.ž [12]. The
International Conference on Functional Programming (ICFP)

programming contest states that łthe goal of the contest was

to allow teams from all over the world to demonstrate the su-
periority of their favorite programming language.ž [7] Even
while the ICFP event is mostly framed as a fun event, the
reports on the competition still highlight how contestants
used their favorite language to create successful and elegant
solutions [7, p. 406]. Both events are popular: the ICPC re-
ported attracted 49,935 students in their 2017 edition [12]
and the ICFP contests attracted between 95 to 194 teams per
year between 2018 and 2021.

The competitions help to promote programming as a skill.
At the same time, participants most likely do not improve
their programming skills during the contests themselves
but rather during the preparations for the contest. At some
universities, students can take courses around Competitive
Programming or featuring small programming competitions.
Some competitions even have their own preparatory syl-
labus that participants can use to train, such as the syllabus
of the International Olympiad in Informatics (IOI), a computer
science competition for school students [4]. Next to institu-
tional courses, a number of books have been published about
how to train for Competitive Programming contests [11, 14].

To our knowledge most of the Competitive Programming
events do not feature tasks focused on debugging. Instead,
the focus is on creating new programs solving given prob-
lems, sometimes using some provided libraries. Debugging
is often regarded as a sub-activity in these competitions that
is not encouraged explicitly. For instance, the IOI mentions
debugging in the preparatory curriculum but denotes it as a
necessary skill that will not be prompted explicitly by the
tasks.
The SCORE contest (Student Contest on Software Engi-

neering) [18] is a variation on Competitive Programming
competitions that tries to cover software development more
holistically. In the corresponding contests, teams of students
work on a selected project and are judged on a variety of
aspects such as the degree to which the delivered system
meets the requirements, the quality of the implementation,
or the way the team collaborates internally or with external
stakeholders. As such, SCORE contests include debugging
as an inherent activity of software development but do not
judge participants according to it.

Capture the Flag. Another area of software development
that features competitions is cybersecurity. In cybersecurity
competitions, contestants generally have to install or over-
come security measures in a variety of contest formats. One
popular format is Capture the Flag (CTF) in which partici-
pants have to plant a token in or retrieve a token from an
unknown network or system. In the attack/defense variation
of CTF, teams are set against each other, with each team try-
ing to secure a vulnerable system before attacking the other
team’s system. Similar to Competitive Programming, cyber-
security contests can attract hundreds of participants. For
instance, in 2021, 433 teams participated in the DEFCON CTF

174



Onward! ’22, December 8ś10, 2022, Auckland, New Zealand P. Rein, T. Beckmann, L. Geier, T. Mattis, R. Hirschfeld

qualification round. To disseminate knowledge about tech-
niques and tools among participants, some contests, such as
DEFCON CTF or Google Hackceler8, highlight and publish
notable approaches or recordings of whole sessions during
a contest. Next to being popular events in themselves, cy-
bersecurity contests are also used in cybersecurity educa-
tion, where students enjoy them as well as train relevant
skills [16, 29].
While in Competitive Programming, contestants create

new programs from scratch, contestants of a CTF contest
work to understand and manipulate an existing system. Both,
cybersecurity activities and debugging share this focus on
existing systems. At the same time, CTF contests are not de-
signed to explicitly prompt debugging. The inherent nature
of debugging tasks and cybersecurity tasks differs in that
CTF contestants are looking for previously unknown diver-
gent behavior, while in debugging the divergent behavior is
the starting point.

3 Competitive Debugging
and Debugging Contests

We propose Competitive Debugging as a way to promote de-
bugging as a skill and to spread knowledge about debugging
techniques and tools. In Competitive Debugging, participants
find and repair prepared failures of a software system and
are rated on various scales such as the time they needed to
repair the failure, the correctness of the patch, or the de-
gree to which the underlying fault was repaired. This basic
concept can be implemented in debugging contests that may
differ in their format depending on their specific goals.
Our proposed format of a debugging contest is the re-

sult of two pilot runs (see Sections 4.1 and 4.2). We ran the
resulting format with a group of ten participants, most of
them graduate-level students (see Section 5). In our contest
format, all participants work on the same task individually
and are rated according to the correctness of their solution
and their debugging speed. While, in the following sections,
we propose one specific contest format, there are numerous
considerations and variations points that may lead to very
different formats (see Section 6).

3.1 Goals

We designed our contest format based on a set of explicit
goals. The primary goal is to advertise debugging as a skill
that one can learn and improve. Thus, we designed the format
so that the contest attracts participants and engages them
throughout the contest. For example, we did not strive to
reconstruct realistic debugging scenarios, as they may occur
in everyday software development but to create tasks that
are feasible within the time-frame and enjoyable. Further, to
motivate participants to take the time to learn and practice
debugging techniques, the event should serve as a goal to
work towards. Finally, we want to promote exchange among

participants about debugging tools and techniques by pro-
viding a public stage for showcasing skills and a gathering
to discuss them.

3.2 Contest Format

The core of our contest format is defined by three aspects: a
previously unknown system, individual work on the same
task at the same time, and no feedback on the rating of a
patch before the submission.

We chose to let participants debug an unknown system to
focus the contest on fault localization and patch generation.
At the beginning of the contest, the organizers demonstrate
how the software system to be debugged is used and give
an overview of all modules and key classes. Participants
cannot investigate the system in advance of the contest. If
participants were allowed access to the system in advance,
the chances of winning would depend on the time invested
in program comprehension in advance of the competition.
Also, by reducing the pressure to work on the system before
the contest, we keep the time investment for this individual
contest low which lowers the bar for people to participate.

In our contest formats, all participants individually work
on the same task at the same time. Each task consists of one
failure for which the participants should create and submit a
patch. At the beginning of each task, the organizers present
the failure. Afterwards, the participants change to their own
systems and start working on the task. By working on the
same task at the same time, participants have a shared expe-
rience and can compare their strategies and results among
each other after the round finished. Also, by having the same
tasks for all participants the results are directly comparable.

A central mechanism of our tasks is that participants have
to decide on their own when the failure is repaired and when
they want to submit their patch. Submitting a wrong patch
results in zero points for the task (for details see Section 3.3).
We do not provide ready-made automated tests, as we want
participants to investigate the failure up to the point that
they are confident that they understood the infection chain.
As a result of this pressure to understand the failure, we hope
to encourage a conscious choice of debugging techniques.

3.3 Scores and Rules

Contestants are rated according to the correctness and speed
of repairing the failure. A patch is rated as either correct or
wrong. If the patch is wrong, the contestant gets zero points
for the task. When the patch is correct, the contestant can get
up to six points, depending on how fast they solved the task.
For every five minutes passed, participants receive on point
less, so they start off with six points and lose one every five
minutes, given that their submitted patch is correct. With
this rating system, we aimed to emphasize correctness, as a
wrong solution results in loosing all points for a task, while
still rewarding efficient debugging techniques. Using an ab-
solute measure allows for a clear interpretation of scores,

175



Competitive Debugging Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

1. Start the game.

2. Navigate to islands until a combat is an-

nounced.

3. Choose "Stay in Formation" to start a ground

combat.

4. Move one of your unit to the left of an enemy

unit.

After moving your unit to the left of an enemy

unit, the attack button still remains disabled.

Normally, the attack button should be enabled

and when you click on the button the attack

should be executed on the enemy unit.

Figure 2. Description of a Competitive Debugging task.

but also requires organizers to balance tasks well, as very
difficult or very easy tasks may result in very similar scores
across the contestants.

To prevent shortcut solutions, we set up a few basic rules
for contestants. First, contestants are not allowed to apply
meta approaches, such as looking for the mechanisms in-
stalling the faults in their system or searching for the files
representing the tasks. This is similar to rules in CTF con-
tests that exclude hacking the contest server. Further, we
exclude the use of any history information in this contest
such as the local history or version control information, as
the loading of faults is part of the local history and we did
not construct a proper history of the system. Searching the
Internet is not forbidden but with our task design we try
to ensure that all information required to solve the task is
available locally.

3.4 Scenario and Tasks

We use manually seeded faults as tasks, as we need control
over the complexity of the tasks and are not interested in a
realistic setting. Each task includes the steps to reproduce the
failure, a description of the wrong behavior to be observed,
and a description of the expected behavior (see Figure 2 for
an example from our main event). As our goal is to engage
participants, the tasks should prompt interesting techniques,
but at the same time be solvable in 30 minutes for most par-
ticipants. Further, most of the task complexity should result
from the fault localization and not from understanding the
task description [26]. To reduce the complexity of under-
standing the task description, the tasks contain complete but
short failure descriptions. With regard to the faults, we limit
ourselves to ordinary control flow faults, such as a flipped
boolean, to keep the entry barrier low. Future contests may
also feature other kinds of faults, for instance faults in con-
current parts of a system (see Section 6). Further, all tasks
only contain a single fault at a single source code location,
manifested as a wrong, missing, or superfluous statement.

3.5 Observing other Contestants

To encourage learning from others and make the event more
fun, the contest features streams of the programming en-
vironments of some contestants. As with code katas [5],
participants gain another chance to reflect on their practice
by deliberately watching the practices of others. Streaming
is voluntary as not to deter participants who would like to
participate but are not confident enough yet to show their
process. A commentator accompanies the stream and con-
tinuously points out interesting techniques and reflects on
potential hypotheses and approaches of contestants.

The stream can be watched by all contestants who finished
their tasks. As this would result in faster contestants to have
more opportunities to watch streams than slower ones, we
also decided to provide everyone a chance to observe by
randomly selecting participants to skip a task and watch
the stream instead. To ensure that skipping a task does not
result in a disadvantage depending on the difficulty of the
task, participants who skipped a task get the mean score for
that task.

3.6 Curriculum

As with Competitive Programming or CTF contests, a Com-
petitive Debugging contest is an exciting event that can
motivate participants to improve their skills. To leverage
this motivation, we offer a preparatory recap session and a
training environment and scenario.
The preparatory session is one week in advance of the

contest and covers the following topics:

• distinction between fault, failure, and infection chain
• debugging strategies: TRAFFIC [33], heuristic and sys-
tematic debugging and when to switch from the first
to the second

• debugging techniques: the scientific method of debug-
ging with explicit hypotheses and deliberate experi-
ments, backwards and forward reasoning, input ma-
nipulation [3]

• standard debugging tools and advanced features of
these tools

Further, these topics are illustrated during a collaborative
debugging session of an example task. After the session,
participants get a training environment that includes the
example task and further training tasks.

4 Pilot Events ś Setups and Insights

As there are no prior debugging contests, we first conducted
two pilot events to determine the experience of participants
and potential blind-spots in our initial ideas for the concept.
The setups of these two pilot events differed from the setup
of our main event (see Section 3 and see Section 5). In the fol-
lowing, we describe these initial, preliminary setups and the
insights we gained from these first two debugging contests.

176



Onward! ’22, December 8ś10, 2022, Auckland, New Zealand P. Rein, T. Beckmann, L. Geier, T. Mattis, R. Hirschfeld

4.1 Contest Pilot

Our first pilot was aimed to get general feedback on the idea
of a Competitive Debugging event.

Setup. The setup of this contest was similar to the setup
of the main event (see Section 3), with some notable differ-
ences. For the pilot, we recruited contestants ranging from
graduate level students, to PhD-students, post docs, and one
professional programmer. All contestants worked in the same
development environment that we prepared ahead of time.
In addition, two people were purely observing the event.
Once a task was completed, contestants could also join the
audience until everyone was done or the time elapsed. The
difficulty of the tasks had a wider spread than our final com-
petition format (see Section 3), ranging from simple mixups
of boolean values to patches that required rewriting whole
methods. At the time, our infrastructure did not permit easily
giving indication of performance, as such participants did
not know their scores until after the event.

Insights. We conducted semi-structured interviews with
contestants and observers to determine how participants
experienced the event. Despite technical difficulties (inter-
rupted streaming, crashing programming environments dur-
ing one task), all participants reported that they enjoyed the
event. Contestants reported that they liked the short time
frame for the tasks, as it reduced the time investment and
as such their fear of wasting their time. Concerning task
difficulty, contestants described that their expectation on the
level of difficulty was unclear. Since the first task involved a
simple flipped Boolean literal, participants had a tendency
to search for problems on a similar level of difficulty, even
when a later task required changing a data structure. As a
result, in the final competition format, we only used tasks
of similar size, to avoid misleading participants. Observing
other participants and receiving commentary from the or-
ganizers was generally perceived as fun, and as such more
entertaining than educational. Two participants in particu-
lar began comparing observed techniques to their own and
commenting while they were part of the audience.

4.2 Tool Show Contest Pilot

Our second pilot was aimed to test two variation points:
a larger audience and a non-standardized development en-
vironment with custom tooling. The goal was to allow the
audience to learn about the strengths and weaknesses of new
programming tools by observing how contestants proficient
with the respective tools would use them to solve the same
task.

Setup. We recruited three contestants, each proficient
with a different development tool (incremental back-in-time
debugger, keyboard-controlled block-based programming
environment, tool environment based on the ideas of ar-
tifacts and projections). Right before the contest we held

the training session for contestants of the main event (see
Section 3.6). The example task we debugged in the training
session was the first task of the tool show contest, so that
participants of the training session had some knowledge of
what the defect was and how it could be debugged. Solutions
to the other tasks were explained by the moderator to the au-
dience just after each round began. Eight of the participants
of the training session joined as the audience for the tool
show contest. We also included a small variation in the tasks:
this time, they involved incomplete descriptions (only one
symptom was described) and failures resulting frommultiple
defects.

Insights. We conducted semi-structured interviews with
observers in the audience and noted some initial reactions of
the three contestants concerning task difficulty. All observers
in the audience stated that they enjoyed the session, men-
tioning that the format did not have any boring or lengthy
sections, even when some participants took longer to solve
a task. However, observers agreed that learning about the
showcased tools was difficult: understanding both a previ-
ously unknown task and tool posed a challenge, worsened
by the fact that we regularly switched between contestant’s
streams during each task. Observers noted that commentary
from moderator, both on the task and the tools were helpful
to follow along. In particular, each time a unique feature
of the showcased tool was used the moderator pointed it
out and participants tended to cheer. These moments when
unique features were used were somewhat rare, however,
as we did not pay special attention to design tasks in such
a way that specialized strengths of the tools became appar-
ent. For this type of format, we also noticed the importance
of ensuring a comparatively higher level of complexity in
the tasks, as some participants finished some tasks within
two minutes, leaving little room to see the tools in action.
Nearly all audience members pointed out that they very
much enjoyed knowing the first task ahead of time from the
training session and were thus able to easily follow along.
From this pilot, we concluded that there is interest in this
observer-heavy format, but to achieve the goal of showcas-
ing advanced tools, the contest format needs to be adapted
more.

5 Main Contest ś Setup and Experiences

With the main event we aimed to test our contest format for
a larger group and explore how a Competitive Debugging
event may influence participants’ perception of and knowl-
edge about debugging. For the main event, we recruited
nine graduate students and one professional programmer
who recently graduated. Of these, nine participated in the
debugging training session one week prior to the contest.

177



Competitive Debugging Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

Figure 3. A photography of parts of the audience watching a
contestant’s stream during the main contest. The dashboard
is visible at the top left of the screen.

5.1 Event Setup

The event corresponds to the contest format described earlier
(see Section 3) with the following detailed setup.

Programming Environment. All participants work in
the same programming environment (also see Section 6), an
unaltered version of the Squeak/Smalltalk environment [10,
13]. We chose this environment, as it provides a variety of de-
bugging tools and all recruited participants are familiar with
it. Squeak/Smalltalk is a live programming environment, so
the whole system can be modified while it is running [27].
Participants can use the workspace to write scripts and ex-
ecute them, the explorer and inspector to inspect the state
of any object in the system, the halo meta-menu2 to reflect
about the user interface and navigate from graphical ele-
ments to the source code, and a step-wise debugger that also
allows for arbitrary dynamic code execution and restart-
ing the execution of method invocations. Participants are
allowed to customize the environment, but not to load addi-
tional programming tools not provided by the environment.
For instance they are allowed to load a window manager or
their own set of shortcuts. We restrict modifications of the
environment to focus on the basic techniques of debugging.
As all participants use the same tools, they can more easily
compare their techniques. Other contest formats may want
to also allow for more advanced tools to promote such tools
(see Sections 4.2 and 6).

System and Tasks. The system participants work on is a
computer game. We selected a game, as the expected group
of participants was likely to be familiar with the architecture
of small games. Whether developers have prior experience
with an application domain can have a major impact on
their debugging efficiency and used techniques [6, 31]. As all
expected participants have previously taken project courses

2A feature of the Squeak/Smalltalk environment that allows picking a user
interface element via the mouse and inspecting and modifying the object
representing it.

Figure 4. Screenshot of the game łRealms-of-Zaltiaž. Shown
is the positional combat scene.

Table 1.Metrics characterizing the game łRealms-of-Zaltiaž.

Metric

#Packages 5
#Classes 50
#Methods 893
#Methods / Class 17.9
LOC 4573
LOC / Method 5.1

Figure 5. Screenshot of the dashboard as shown during the
contest. Displayed are the statistics for each active contestant
during a single task. In the top row are the total time for
the task for each participant, as the round had finished. The
participant names have been redacted.

178



Onward! ’22, December 8ś10, 2022, Auckland, New Zealand P. Rein, T. Beckmann, L. Geier, T. Mattis, R. Hirschfeld

with small games as projects, we expected them to have
similar prior experiences with games.
We also selected a game, as games offer a variety of con-

cerns such as event handling, state propagation, file I/O,
rendering, and algorithms. This variety allows us to define a
variety of different tasks.

The particular systemwe have selected is the game łRealms-
of-Zaltiaž, developed by a group of undergraduate students
in a course on software architecture. It is a single-player role-
playing game including the following features (see Figure 4):

• basic and positional, turn-based combat
• randomly generated world maps,
• sprite-based graphics and animation,
• equipping characters with items,
• buying and selling items,
• experience and skill points,
• sound, and
• custom widgets and menu classes.

With 4573 LOC the game has an average size for a game with
the aforementioned features developed during the course
(for more metrics see Table 1).

Schedule and Streaming Setup. We ran one warm-up
task and four tasks for the contest. During each of the four
task, we had either three or two participants skip their turn
and instead observe the other participants working. We had
asked four participants to stream their setup and ensured
that during each task we had at least two people streaming.
In addition, we instrumented the development environ-

ment to, for each contestant, report the

• number of unique touched classes,
• number of unique touched methods,
• number of times the debugger opened,
• number of times the game was restarted, and
• start and end times.

These stats were displayed in a live-updating dashboard that
we displayed next to the streams (see Figure 5).

After participants completed all tasks, the organization
team checked whether the submitted patches were correct,
calculated the scores based on the correctness and the time
taken, and awarded the average scores of each run to partici-
pants who were observers. We decided to manually judge the
correctness of the patches, as we were not confident yet, that
we understood the potential variety of submitted patches.
No participant had submitted incorrect solutions during this
run. The leaderboard including final scores was then sent
out via mail shortly after the event.

5.2 Participants’ Experience

To determine the general merit of debugging contests and
avenues for improvement, we asked participants about their
experience during the contest.

Experience as Observer

Experience as Contestant

Overall Experience

100 50 0 50 100
Percentage

Response very dismal dismal neutral enjoyable very enjoyable

Figure 6. Results of the questionnaire questions on partic-
ipant’s experience. Participants rated their experience as
observers less enjoyable than their experience as contes-
tants.

After the contest was over, we asked all participants to fill
out a short questionnaire containing ten likert-scale state-
ments about their experience and how the event influenced
their perception of debugging (see Section 5.2 below). We
then proceeded to semi-structured interviewswith the partic-
ipants. The questions should help start the conversation with
participants about their learnings from being contestants or
observers, how the contest influenced their perception of
debugging, how the training influenced their approach to the
event, which formats they would be interested in in the fu-
ture, how they experienced the competitiveness, and finally
their general experience.
We summarized the insights from the interviews accord-

ing to major, recurring themes.

Questionnaire Results. Overall participants very much
enjoyed the contest, a result also reflected in the interviews
(see Figure 6). With regard to whether how they enjoyed
being a contestant or an observer, participants reported to
have enjoyed being an observer slightly less than being a
contestant.

According to the questionnaire responses, participants did
not have a strong impression of having learned something
about debugging at the conference (see Figure 7). However,
the contest seemingly achieved its purpose of sparking inter-
est about debugging and prompting participants to regard
debugging as a skill to be improved. Almost all participants
reported to have reflected about their debugging process
during the contest and most participants reported to be mo-
tivated to learn more about debugging techniques and tools.

Experience as a Contestant. All contestants reported
that they generally enjoyed the whole event and all stated
that they would be interested in taking part in other debug-
ging contests.
The fact that the event was a contest and that they had

to work under time-pressure led to various impressions. For
some participants the competitive pressure to debug quickly
was exciting and motivating. One contestant put it as: łI
liked that there is something that makes one nervous but

179



Competitive Debugging Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

The contest did not motivate
me to learn more about

debugging.

My understanding of my
debugging process is the same

after the contest as it was
before.

Due to the contest, I
reflected about my debugging

process.

The contest motivated me to
learn more about debugging

tools in the future.

The contest motivated me to
learn more about debugging

techniques in the future.

As an observer, I learned
something about debugging.

As a contestant, I learned
something about debugging.

100 50 0 50 100
Percentage

Response strongly disagree disagree neutral agree strongly agree

Figure 7. Results of the questionnaire questions on partici-
pant perception of how the contest influenced how they see
debugging. The bottom-most questions are inverted ques-
tions. Participants did not have a strong impression that they
learned something about debugging during the event. At the
same time, due to the contest they reported to have reflected
about their process and felt motivated to learn more about
debugging.

is actually without consequences.ž 3 At the same time, sev-
eral participants who only saw a small chance of winning
reported that they mostly tried to keep face, but even among
this group all participants enjoyed the event.

Difficulty of the tasks. During the interviews, the diffi-
culty of the tasks came up regularly. Contestants liked that all
tasks were generally solvable within the time-frame. One par-
ticipant reported that they got the impression that there was
not much to learn about debugging anymore, which might
be the result of the small scope and basic characteristics of
the defects. Finally, for some participants the expectations on
the task selection led to some meta-gaming. One participant
reported that łbecause I knew in advance that the bugs can
not be too complicated, I reached the solutions more quickly
. . . this felt like cheating sometimesž.

Changed Perception of Debugging. Several but not all
participants reported that they inspected their own debug-
ging activity more consciously during the contest. Insights
ranged fromminor workflow improvements to general shifts
in perception. One participant reported that the contest
helped them realize how to leverage live programming capa-
bilities to reduce the time to reproduce a failure by keeping
the game running. Another contestant reported that they

3All quotes are translated from the participants’ native tongue (German) to
English.

discovered a number of unnecessary or unproductive activi-
ties in their debugging process. Finally, one participant even
reported a general shift in their perception of their debug-
ging process, as they realized that they very often try to find
defects solely by reading code and seldom use the debugger,
a strategy they want to re-consider in the future. They ex-
plained that they realized this after seeing the statistics in
the dashboard.

Relation to Training Session. Several other participants
related their learnings during the contest to the training
session. Many mentioned that they started reflecting about
their hypotheses during their debugging progress or at least
recognized their hypotheses as such. One participant men-
tioned that they attended the training for the contest, but
managed to already apply the techniques successfully in
their everyday work in the week up to the contest. Others
mentioned that they planned to use input manipulation as a
techniques, but did not manage to apply it successfully dur-
ing the contest. Several participants with experience with
Competitive Programming reported that they would have
liked even more training, as they felt that this is where most
of the learning occurs in Competitive Programming.

Experience as an Observer. The opinions on observing
other contestants was more mixed than in the pilot runs.
One participant found it outright boring. Others had trouble
following along, even though we kept the stream with one
participant from start to finish, potentially because they only
started watching half-way through the task. One problem
of this event was that due to the voluntary streaming there
were only four streams and as soon as these contestants
completed the tasks, there were no more streams to watch.
Several participants would have liked to keep on observing
other contestants. The dashboard bridged the gap to some
extent and allowed for some more commentary but was ul-
timately less interesting than a full stream. While only one
participant reported learning a new technique fromwatching
other contestants (conditional breakpoints), many partici-
pants still found it interesting to see others using the tools.
They also liked the stream to judge their own skill level in
relation to others. Finally, several participants reported that
they used the phases for watching the streams not to observe
others, but to ask the other contestants how they approached
the task. They found these discussions so useful that they
also suggested to allocate more time for discussing solutions.

Future Formats. All participants were interested in fu-
ture editions of the event. Some even suggested larger for-
mats on their own that would cover a more extensive cur-
riculum and include more difficult defects. Other enjoyed
the fast pace of the event and would like to participate in
another event with similar tasks.

180



Onward! ’22, December 8ś10, 2022, Auckland, New Zealand P. Rein, T. Beckmann, L. Geier, T. Mattis, R. Hirschfeld

6 Considerations

Our proposed contest format is geared towards engaging
participants and promoting debugging as a skill. While de-
signing the Competitive Debugging format, we encountered
a number of considerations, which we describe in the fol-
lowing.

Depending on how organizers decide on these considera-
tions, future contests may take on various forms. For exam-
ple, a contest may aim to showcase long-term strategies and
advanced tool usage, and may therefore feature teams work-
ing on difficult defects sourced from a large open-source
project. Another contest may aim to promote techniques
for specific kinds of defects such as defects related to con-
currency or memory corruption, and may therefore only
feature defects of that particular category. Finally, an event
may focus on the audience instead of the contestants and
therefore feature a small number of defects that are interac-
tively debugged with the audience in advance of watching
few expert debuggers trying to repair them live.

Programming Language. In the Competitive Program-
ming and CTF formats, programming languages can typically
be chosen freely, as the tasks are mostly concerned with pro-
gram output. In Competitive Debugging, contrarily, the task
concerns the system code itself. As it is non-trivial to create
a comparable debugging scenario in two different program-
ming languages, the choice of language will be a major point
deciding which communities will be addressed by the event.

Tools. Unlike with programming languages, a contest may
allow contestants to use different tools and programming en-
vironments and still pose a comparable challenge. Of course,
if all contestants are using the same tools, it becomes easier
to compare their approaches. However, with an open choice
of tools, there may be greater learning opportunity for ob-
servers, as they can learn about the different strengths of
various tools.

Choice of System. When choosing a system to be de-
bugged, the application domain and the size and inner quality
of the system can influence the character of the competition.
As described earlier, the application domain has a major

influence on the debugging strategies and techniques. In our
contest, all participants were familiar with small games as an
application domain. In more heterogeneous groups of partic-
ipants, participants will have more diverse experiences with
application domains. In this case, organizers may announce
the application domain in advance to enable participants to
decide whether they want to participate or enable them to
catch up about basic principles of the application domain.
An interesting consideration arose due to the fact that

we used a system written by undergraduate students: par-
ticipants tended to assume they were given generally well-
written code, which was not always true. As such, some tasks
increased significantly in complexity as bad naming choices,

surprising implementations, or mixing of layers of abstrac-
tion led participants to discard or pose incorrect hypotheses
during debugging.

Tasks. Many participants of our events mentioned that
simultaneously working on a single task resulted in interest-
ing and enjoyable aspects such as post-task discussions and
the possibility to directly compare approaches. At the same
time this schedule of releasing one task at a time constrains
the size of tasks, as more complex tasks may result in a larger
spread between contestants’ results and thus more waiting
time. Alternatively, participants may receive all tasks at once,
similar to how Competitive Programming contests are orga-
nized. This may be particularly interesting in settings with
larger systems and teams competing against each others,
especially when confronted with a large number of tasks
that require teams to estimate effort and coordinate their
approach.

Characteristics of Faults. The difficulty of the tasks
mainly depends on the characteristics of the faults. In the
following, we briefly describe some factors we considered
when designing our tasks. For one, there can be just a single
or multiple symptoms of the fault. Additionally, contestants
tended to be more confused or unsure when the task descrip-
tion was not exhaustively listing all symptoms. Similarly,
there may only be a single or multiple places that require
patching. In particular, if there are multiple places, does the
task description hint at all symptoms that occur or would
the participants have to anticipate a corner case and test it
themselves to provide a correct solution? The type of change
may range from changing a single token, such as a literal
or a property name, over deleting or adding a statement, to
proper refactorings, for instance changing a data structure
and optionally adapting identifier names accordingly.

Reproducing and inspecting the bug may also be challeng-
ing, for example if the bug arises due to concurrency or does
not occur when in a debugger. If working in a live system
such as Squeak/Smalltalk, bugs that crash the development
environment often require specific strategies to investigate
as well. Lastly, bugs may be designed to entice use of specific
tooling, such as plots when a value in a control system is not
developing over time as desired.

Individuals vs. Teams. Debugging is commonly done
alone or in pairs. If allowed to work in pairs, participants may
experience the contest as more fun, as there are more social
interactions. Additionally, it may help participants explicat-
ing their process, as they have to explain their thoughts to
their partner. An often mentioned aspect was also the wish
of observers to be able to follow along with what the con-
testants are actually thinking. Working in teams may thus
enable getting insights into some thought processes if audio
was transmitted alongside the video.

181



Competitive Debugging Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

Integrating Program Comprehension. Previous knowl-
edge about the system to be debugged determines what
kind of hypotheses participants can generate. In our for-
mat, we balanced previous knowledge about the system by
confronting participants with a completely new system and
only providing a small introduction just before the contest.
To emphasize program comprehension techniques and tools,
the contest may have an initial phase during which partici-
pants may learn as much about an unaltered version of the
system as possible before the tasks begin where bugs are
injected in the system.

Training. Even our small training and recapitulation one
week before the main event had a considerable influence on
participants and their reported behavior during debugging.
Participants stated that they were looking for opportunities
to apply learned techniques and consciously began formu-
lating hypotheses rather than following their usual, often
unstructured, approach. In Competitive Programming, the
training ahead of a contest is an integral part of the com-
petitions. Similarly, debugging contests may feature regular
training and teaching sessions in advance of the event. In
particular, if focus is put on a specific domain or tool par-
ticipants could benefit from a preparation that introduces
common failures or approaches.

Scaling the Event. Organizers might have to reconsider
some of our decisions when scaling a debugging contest to
a setting with more than twenty participants.
First of all, task management, including scoring, would

need to be fully automated to allow for timely feedback on
task results. We used manual scoring for our main event, as
we were yet unsure of the variety of potential approaches to
the task and preferred to manually decide on the correctness
of a task. This is infeasible for larger audiences and may be
replaced with a set of unit tests to be executed on submission
of the patch. Further, our current scoring system might be
unsuitable for larger audiences, as it might not result in a
sufficient spread in the scores to get distinct positions per
participant. This might be acceptable in university teaching
situations where a general measure of skill might suffice, but
may be less motivating in other settings.
Second, in a contest, that includes streaming of partici-

pants’ screens, a higher number of observers may result in
higher pressure for the participants who stream, which may
in turn deter participants from streaming.
Finally, a large number of participants results in a mun-

dane logistic challenge. For our events, we used two rooms:
in one room participants’ worked on the task in silence, and
in the other participants’ watched the streams and chatted.
Participants left the working room quietly to not disturb the
remaining contestants. This setup might not be possible with
larger numbers of participants.

Observing. With our format, we also aimed to create an
informative and enjoyable format for observers. Based on
the insights from our three contests, we are not yet sure
what an ideal format may look like.

A first consideration was the frequency of switching be-
tween streams. Staying focused on a single contestant per
task allowed observers to more easily understand and follow
along with their thought process. However, there were in
parts situations where contestants got stuck and spent time
not interacting with the development environment at all.
Switching to another contestant may allow to fill these gaps
more easily. Additionally, when switching streams, observers
can get a broader impression of the various approaches to
the same task. Instead, with a single focus, contestants who
completed their tasks and had not been observed typically
gave a quick summary of their approach in the post-task
discussion.
We found that, especially in a remote or hybrid setting,

creating smaller groups with a moderator each, benefited
lively discussions among observers. The moderator had the
important function of providing observers with a sense of
the actual effectiveness of contestants’ steps through com-
mentary, as the moderators knew the location of the defect
and had at least moderate familiarity with the structure of
the system. If given more time to prepare, observers during
our second pilot also reported that they particularly enjoyed
observing contestants solve the task they had previously
solved themselves. This may be integrated in the format ei-
ther by prefixing each task with a detailed walk-through by
the moderator or by giving observers access to the tasks they
will be observing before the event.

The dashboard (see Figure 5) allowed observers to get an
overview of how the contestants were generally performing.
The collected statistics were useful for some meta commen-
tary (for instance, łp1 has not opened the debugger once to
solve this taskž) but were only of limited use to see usage pat-
terns, as they were limited to łopenž events. A better picture
of participants’ activities may be gained by sending events
only after spending some time with an opened artifact or
reporting active phases in each tool or artifact. Additionally,
to gain a fast overview of the progress of participants, it may
be worthwhile to create a metric that roughly signifies the
semantic distance between the current artifacts a contestant
inspects and the location of the bug. For example, this may
be a number of steps in a pre-recorded call trace.

7 Conclusion

While debugging is a central activity of software develop-
ment, debugging is seldom taught and trained extensively. By
introducing Competitive Debugging we set out to highlight
debugging as a skill and to provide a platform for software de-
velopers to discuss and exchange debugging techniques and
tools to improve their skills. The basic mechanism of who

182



Onward! ’22, December 8ś10, 2022, Auckland, New Zealand P. Rein, T. Beckmann, L. Geier, T. Mattis, R. Hirschfeld

finds the correct patch for a defect in the shortest amount
of time can be implemented in various different contest for-
mats. We propose a format designed to attract and engage
participants to motivate them to learn more about debugging.
In summary, based on two pilot events and a main event,
we found that participants were highly engaged during the
format, more so as contestants than as observers, and stated
that they reflected on their approach to debugging due to
the contest. In addition, we list a number considerations for
future formats to help organizers of future debugging con-
tests find suitable tasks or adapt the observers’ experience
to their setting.

Debugging contests may have the potential to help devel-
opers refine their debugging techniques and spread the word
about advanced debugging tools and thereby, in the end,
help software developers to be more engaged and productive
when debugging.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) ś 449591262. We also gratefully
acknowledge the financial support of HPI’s Research School4

and the Hasso Plattner Design Thinking Research Program5.

References
[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An

analysis of patterns of debugging among novice computer science
students. In Proceedings of the 10th Annual SIGCSE Conference on

Innovation and Technology in Computer Science Education, ITiCSE

2005, Caparica, Portugal, June 27-29, 2005, José C. Cunha, William M.
Fleischman, Viera K. Proulx, and João Lourenço (Eds.). ACM, 84ś88.
https://doi.org/10.1145/1067445.1067472

[2] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman.
2018. On the dichotomy of debugging behavior among programmers.
In Proceedings of the 40th International Conference on Software Engi-

neering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel
Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.).
ACM, 572ś583. https://doi.org/10.1145/3180155.3180175

[3] Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Ema-
murho Ugherughe, and Andreas Zeller. 2017. Where is the bug and
how is it fixed? an experiment with practitioners. In Proceedings of

the 2017 11th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, Eric Bodden,
Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman (Eds.). ACM,
117ś128. https://doi.org/10.1145/3106237.3106255

[4] Benjamin Burton. 2022. Foreword to Olympiads in Informatics Vol. 16.
Olympiads in Informatics 16 (2022), 1ś2. https://doi.org/10.15388/ioi.

2022.00

[5] Thomas Clavier, Alexis Benoist, Emmanuel Gaillot, Olivier
Albiez, and Étienne Charignon. 2022. WhatIsCoding-

Dojo. http://web.archive.org/web/20221018153900/https:

//codingdojo.org/practices/WhatIsCodingDojo/

[6] Françoise Détienne. 2001. Software design cognitive aspects. Springer.
http://www.springer.com/computer/swe/book/978-1-85233-253-2

4https://hpi.de/en/research/research-school.html
5https://hpi.de/en/dtrp/

[7] Eelco Dolstra, Jurriaan Hage, Bastiaan Heeren, Stefan Holdermans,
Johan Jeuring, Andres Löh, Clara Löh, Arie Middelkoop, Alexey Ro-
driguez, and John van Schie. 2008. Report on the tenth ICFP program-
ming contest. In Proceeding of the 13th ACM SIGPLAN international

conference on Functional programming, ICFP 2008, Victoria, BC, Canada,

September 20-28, 2008, James Hook and Peter Thiemann (Eds.). ACM,
397ś408. https://doi.org/10.1145/1411204.1411259

[8] Marc Eisenstadt. 1997. My hairiest bug war stories. Commun. ACM

40, 4 (1997), 30ś37.
[9] Sue Fitzgerald, Gary Lewandowski, Renée McCauley, Laurie Murphy,

Beth Simon, Lynda Thomas, and Carol Zander. 2008. Debugging:
finding, fixing and flailing, a multi-institutional study of novice debug-
gers. Comput. Sci. Educ. 18, 2 (2008), 93ś116. https://doi.org/10.1080/

08993400802114508

[10] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language

and Its Implementation. Addison-Wesley.
[11] Steven Halim and Felix Halim. 2013. Competitive Programming, Third

Edition. Lulu.
[12] icpc.foundation. 2022. ICPC Contest 2021 Page. http://web.archive.org/

web/20220704072158/https://icpc.global/regionals/abouticpc

[13] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan C.
Kay. 1997. Back to the Future: The Story of Squeak - A Usable Smalltalk
Written in Itself. In Proceedings of the 1997 ACM SIGPLAN Conference

on Object-Oriented Programming Systems, Languages & Applications,

OOPSLA 1997, Atlanta, Georgia, October 5-9, 1997, Mary E. S. Loomis,
Toby Bloom, and A. Michael Berman (Eds.). ACM, 318ś326. https:

//doi.org/10.1145/263698.263754

[14] Antti Laaksonen. 2020. Guide to Competitive Programming. Springer
International Publishing. https://doi.org/10.1007/978-3-030-39357-1

[15] Alex Lang and Jasper Van der Jeugt. 2021. ICFP Contest 2021. http://web.
archive.org/web/20220507121209/https://icfpcontest2021.github.io/

[16] Kees Leune and Salvatore J. Petrilli Jr. 2017. Using Capture-the-Flag to
Enhance the Effectiveness of Cybersecurity Education. In Proceedings

of the 18th Annual Conference on Information Technology Education

and the 6th Annual Conference on Research in Information Technology,

SIGITE/RIIT 2017, Rochester, New York, USA, October 4-7, 2017, Stephen J.
Zilora, Tom Ayers, and Daniel S. Bogaard (Eds.). ACM, 47ś52. https:

//doi.org/10.1145/3125659.3125686

[17] Bil Lewis. 2003. Debugging Backwards in Time, In Proceedings of the
Fifth International Workshop on Automated Debugging (AADE-BUG
2003). CoRR cs.SE/0310016. http://arxiv.org/abs/cs/0310016

[18] DinoMandrioli, Stephen Fickas, Carlo A. Furia, Mehdi Jazayeri, Matteo
Rossi, and Michal Young. 2010. SCORE: the first student contest on
software engineering. ACM SIGSOFT Softw. Eng. Notes 35, 4 (2010),
24ś30. https://doi.org/10.1145/1811226.1811240

[19] Renée McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy,
Beth Simon, Lynda Thomas, and Carol Zander. 2008. Debugging: a
review of the literature from an educational perspective. Comput. Sci.

Educ. 18, 2 (2008), 67ś92. https://doi.org/10.1080/08993400802114581

[20] Tilman Michaeli and Ralf Romeike. 2019. Current Status and Per-
spectives of Debugging in the K12 Classroom: A Qualitative Study. In
IEEE Global Engineering Education Conference, EDUCON 2019, Dubai,

United Arab Emirates, April 8-11, 2019, Alaa K. Ashmawy and Sebastian
Schreiter (Eds.). IEEE, 1030ś1038. https://doi.org/10.1109/EDUCON.

2019.8725282

[21] Tilman Michaeli and Ralf Romeike. 2019. Improving Debugging Skills
in the Classroom: The Effects of Teaching a Systematic Debugging
Process. In Proceedings of the 14th Workshop in Primary and Secondary

Computing Education, WiPSCE 2019, Glasgow, Scotland, UK, October

23-25, 2019. ACM, 15:1ś15:7. https://doi.org/10.1145/3361721.3361724

[22] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: the good, the
bad, and the quirky ś a qualitative analysis of novices’ strategies.
In Proceedings of the 39th SIGCSE Technical Symposium on Computer

183

https://doi.org/10.1145/1067445.1067472
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.1145/3106237.3106255
https://doi.org/10.15388/ioi.2022.00
https://doi.org/10.15388/ioi.2022.00
http://web.archive.org/web/20221018153900/https://codingdojo.org/practices/WhatIsCodingDojo/
http://web.archive.org/web/20221018153900/https://codingdojo.org/practices/WhatIsCodingDojo/
http://www.springer.com/computer/swe/book/978-1-85233-253-2
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/
https://doi.org/10.1145/1411204.1411259
https://doi.org/10.1080/08993400802114508
https://doi.org/10.1080/08993400802114508
http://web.archive.org/web/20220704072158/https://icpc.global/regionals/abouticpc
http://web.archive.org/web/20220704072158/https://icpc.global/regionals/abouticpc
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
https://doi.org/10.1007/978-3-030-39357-1
http://web.archive.org/web/20220507121209/https://icfpcontest2021.github.io/
http://web.archive.org/web/20220507121209/https://icfpcontest2021.github.io/
https://doi.org/10.1145/3125659.3125686
https://doi.org/10.1145/3125659.3125686
http://arxiv.org/abs/cs/0310016
https://doi.org/10.1145/1811226.1811240
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1109/EDUCON.2019.8725282
https://doi.org/10.1109/EDUCON.2019.8725282
https://doi.org/10.1145/3361721.3361724


Competitive Debugging Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

Science Education, SIGCSE 2008, Portland, OR, USA, March 12-15, 2008,
J. D. Dougherty, Susan H. Rodger, Sue Fitzgerald, and Mark Guzdial
(Eds.). ACM, 163ś167. https://doi.org/10.1145/1352135.1352191

[23] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert
Hirschfeld. 2017. Studying the advancement in debugging practice of
professional software developers. Softw. Qual. J. 25, 1 (2017), 83ś110.
https://doi.org/10.1007/s11219-015-9294-2

[24] Guillaume Pothier and Éric Tanter. 2009. Back to the Future: Om-
niscient Debugging. IEEE Software 26, 6 (2009), 78ś85. https:

//doi.org/10.1109/MS.2009.169

[25] Patrick Rein, Tom Beckmann, Leonard Geier, Toni Mattis, and Robert
Hirschfeld. 2022. Materials for Conducting Debugging Contests. https:
//doi.org/10.5281/zenodo.7223815

[26] Patrick Rein, Tom Beckmann, Toni Mattis, and Robert Hirschfeld. 2022.
Toward Understanding Task Complexity inMaintenance-based Studies
of Programming Tools. In Proceedings of the Programming Experience

2022 (PX/22) Workshop, Porto, Portugal, March 21, 2022. ACM, 1ś8.
https://doi.org/10.1145/2984380.2984381

[27] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias
Pape. 2019. Exploratory and Live, Programming and Coding - A
Literature Study Comparing Perspectives on Liveness. Art Sci. Eng.
Program. 3, 1 (2019), 1. https://doi.org/10.22152/programming-journal.

org/2019/3/1

[28] RTI. 2002. The Economic Impacts of Inadequate Infrastructure for Soft-

ware Testing. Technical Report. National Institute of Standards &

Technology. 309 pages.
[29] Valdemar Svábenský, Pavel Celeda, Jan Vykopal, and Silvia Brisáková.

2021. Cybersecurity knowledge and skills taught in capture the flag
challenges. Comput. Secur. 102 (2021), 102154. https://doi.org/10.1016/

j.cose.2020.102154

[30] Radhika D. Venkatasubramanyam and Sowmya G. R. 2014. Why is dy-
namic analysis not used as extensively as static analysis: an industrial
study. In 1st International Workshop on Software Engineering Research

and Industrial Practices, SER&IPs 2014, Hyderabad, India, June 1, 2014,
Rakesh Shukla, Anjaneyulu Pasala, and Srinivas Padmanabhuni (Eds.).
ACM, 24ś33. https://doi.org/10.1145/2593850.2593855

[31] Anneliese von Mayrhauser and A. Marie Vans. 1997. Program under-
standing behavior during debugging of large scale software. In Papers

presented at the Seventh Workshop on Empirical Studies of Programmers,

ESP 1997, Alexandria, Virginia, USA, 1997, Susan Wiedenbeck and Jean
Scholtz (Eds.). ACM, 157ś179. https://doi.org/10.1145/266399.266414

[32] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
2016. A Survey on Software Fault Localization. IEEE Trans. Software

Eng. 42, 8 (2016), 707ś740. https://doi.org/10.1109/TSE.2016.2521368

[33] Andreas Zeller. 2009. Why Programs Fail - A Guide to Systematic

Debugging, 2nd Edition. Academic Press. http://store.elsevier.com/

product.jsp?isbn=9780123745156&pagename=search

Received 2022-07-12; accepted 2022-10-02

184

https://doi.org/10.1145/1352135.1352191
https://doi.org/10.1007/s11219-015-9294-2
https://doi.org/10.1109/MS.2009.169
https://doi.org/10.1109/MS.2009.169
https://doi.org/10.5281/zenodo.7223815
https://doi.org/10.5281/zenodo.7223815
https://doi.org/10.1145/2984380.2984381
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1016/j.cose.2020.102154
https://doi.org/10.1016/j.cose.2020.102154
https://doi.org/10.1145/2593850.2593855
https://doi.org/10.1145/266399.266414
https://doi.org/10.1109/TSE.2016.2521368
http://store.elsevier.com/product.jsp?isbn=9780123745156&pagename=search
http://store.elsevier.com/product.jsp?isbn=9780123745156&pagename=search

	Abstract
	1 Introduction
	2 Background
	2.1 The Need for Debugging Education
	2.2 Related Software Development Competitions

	3 Competitive Debuggingand Debugging Contests
	3.1 Goals
	3.2 Contest Format
	3.3 Scores and Rules
	3.4 Scenario and Tasks
	3.5 Observing other Contestants
	3.6 Curriculum

	4 Pilot Events - Setups and Insights
	4.1 Contest Pilot
	4.2 Tool Show Contest Pilot

	5 Main Contest - Setup and Experiences
	5.1 Event Setup
	5.2 Participants' Experience

	6 Considerations
	7 Conclusion
	Acknowledgments
	References

